
Variance Regularizing Adversarial Learning

Karan Grewal * 1 R Devon Hjelm * 2 3 Yoshua Bengio 2 3 4

Abstract
We introduce a novel approach for training ad-
versarial models by replacing the discrimina-
tor score with a bi-modal Gaussian distribution
over the real/fake indicator variables. In or-
der to do this, we train the Gaussian classifier
to match the target bi-modal distribution im-
plicitly through meta-adversarial training. We
hypothesize that this approach ensures a non-
zero gradient to the generator, even in the limit
of a perfect classifier. We test our method
against standard benchmark image datasets as
well as show the classifier output distribution
is smooth and has overlap between the real and
fake modes.

1. Introduction
Generative adversarial networks (GANs, Goodfellow
et al., 2014) are a framework for training a generator
of some target (i.e., “real”) distribution without explic-
itly defining a parametric generating distribution or a
tractable likelihood function. Training the generator re-
lies on a learning signal from a discriminator, which is
optimized on a relatively simple objective to distinguish
between generated (i.e., “fake”) and real samples. In or-
der to match the true distribution, the generator param-
eters are optimized to maximize the loss as defined by
the discriminator, which by analogy makes the generator
and discriminator adversaries.

GANs have attained strong recognition as being able
to generate high-quality images with sharp / realistic
edges (Radford et al., 2015) in comparison to maximum-
likelihood estimation (MLE, Dempster et al., 1977)-
based methods (e.g., explicit graphical model formula-
tions found in Kingma & Welling, 2013; Salakhutdinov
& Hinton, 2009, etc). However, GANs have been shown
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to suffer from instability in training (Arjovsky & Bot-
tou, 2017), so that successful learning is highly reliant
on hyperparameter-tuning and model parameterization.
Recent advances in training GANs have attempted to
address stability and other issues (e.g., Salimans et al.,
2017, by adding label noise), notably by imposing Lip-
schitz constraints on the discriminator via weight clip-
ping (see Wasserstein GANs (WGAN), Arjovsky et al.,
2017) or gradient penalty (Gulrajani et al., 2017).

Imposing Lipshitz constraints can improve stability of
GAN training, avoiding the situation where the dis-
criminator is over-optimized to the point that nearly in-
distinguishable samples can have very different scores.
The motivation is to use a “weaker” discrimination met-
ric than the common Kullback–Leibler (KL) or Jensen-
Shannon (JSD) divergences, which are arguably poor
metrics when the true dataset has support on low-
dimensional manifolds (Arjovsky & Bottou, 2017). The
Lipschitz constraint then ensures that the compressed
representation of the data and generated distributions as
defined by the discriminator output are smooth, which
should ensure a non-zero learning signal for the genera-
tor. This contrasts with traditional GANs and recently in-
troduced least-squares GAN (LSGAN, Mao et al., 2016),
where the discriminator is allowed to be arbitrarily pow-
erful and can compress the input to a nearly discretized
distribution over the output space.

However, it is unclear how enforcing smoothness in the
discriminator affects the overall quality of the generator
through optimization, as a weaker discriminator could, in
principle, give poor samples good scores (or visa versa).
In addition, measuring the Lipschitz constant cannot be
done exactly, so imposing smoothness can only be done
approximately through auxiliary optimization techniques
(such as with weight clipping or gradient penalties).

Rather than penalizing the discriminator for being non-
Lipschitz, which is difficult, we take a slightly different
approach to learning a smooth discriminator function by
training a Gaussian classifier over the real/fake indicator
variables. Depending on the overlap between the mixture
components, this optimization can produce a “weaker”
metric for the generator, which is trained to concen-
trate on the mode corresponding to the “real” indicator
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variable. In order to train the classifier, we introduce
two smaller “meta”-discriminators, each corresponding
to the generated and real-data modes (fake/real indicator
variables), and each of which use samples drawn from
a uni-variate and unit-variance Gaussian as “real” sam-
ples. The meta-discriminators are trained using a nor-
mal GAN loss, while the classifier is trained to “fool”
both meta-discriminators (act like an adversarial gener-
ator to both meta-discriminators, simultaneously). We
show that this approach ensures overlap between the
classifier output modes with a smooth distribution and
a non-zero gradient for the generator. We also show that
this method trains successfully on a variety of standard
image datasets.

2. Methods
Let us consider training a generating function, G(z),
where z is some set of latent variables sampled from
a multivariate noisy a-priori (e.g., a multivariate Gaus-
sian) distribution, p(z). Next, define a discriminator,
y(x), which takes as input samples from the generator
x ∼ pg(x) or samples from the real empirical distribu-
tion, x ∼ pd(x), where y(x) is a deep neural network
with no output nonlinearity.

In the context of generative adversarial learning (a.k.a.,
GANs), it is typical to define a score function, D(y(x)),
and a value function,

V (G, y) = Ex∼pd(x)[D(y(x))] + Ez∼p(z)[D
†(y(G(z)))],

(1)

where D†(.) is a convex conjugate (see Nowozin et al.,
2016). When the discriminator is optimal w.r.t. the
value function for a given generator, in other words when
y(x) = y? = argmaxy V (G, y), it is commonly the
case that the value function becomes flat everywhere
where the generated and real distributions have support,
so that:

Ex∼pd(x)

[
∂D

∂y?
∂y?

∂x
(x)

]
= Ex∼pg(x)

[
∂D†

∂y?
∂y?

∂x
(x)

]
= 0.

(2)

This pathology occurs despite well-defined score func-
tions, D and D†, as derivatives of the discriminator out-
put, ∂y/∂x, only needs to be non-zero in a way to en-
sure that D and D† are maximized in the regions of real
data and generated samples, respectively (for instance,
non-zero at the decision boundary of a binary-classifier
discriminator).

This partially motivates Wasserstein GANs (WGAN, Ar-
jovsky et al., 2017), which seek to force the deriva-
tives ∂y/∂x to be non-zero in the regimes corresponding

to data or samples, by imposing a Lipschitz constraint
which places an upper bound on ∂y/∂x. Imposing this
upper bound ensures that the optimal discriminator (in
this context called a “critic”) cannot be too sharp, hence
ensuring smoother global discriminator output.

A different view of the above problem is that the out-
put of the optimal discriminator, y?, has zero variance in
the regimes of interest. In order to address this, we posit
linear classifier whose optimal distribution, p?D(y), given
y?, is a mixture of Gaussian distributions over the re-
al/fake indicator variables, each with set mean and vari-
ance. While this does not explicitly forbid sharpness in
the classifier output, sharp boundaries are no longer an
explicit optimum, as the modes share support.

Let Nf (y) = N (µf , 1) and Nr(y) = N (µr, 1) be uni-
variate Gaussian distributions with standard deviation 1
and means µf and µr respectively, and define the classi-
fier as the mixture:

p?C(y) =
1

2
(Nf (y) +Nr(y)), (3)

where we have assumed the priors of the “real” and
“fake” labels are both 1

2 . In order to ensure that the clas-
sifier follows this distribution, we define two “meta” dis-
criminators, F (y) and R(y), which are trained to maxi-
mize the value functions:

Vf (F, y) =Ey∼Nf (y)[logF (y)]

+Ez∼p(z)[log (1− F (y(G(z))))]
Vr(R, y) =Ey∼Nr(y)[logR(y)]

+Ex∼pd(x)[log (1−R(y(x)))]. (4)

The meta-discriminators and the classifier are trained by
playing two adversarial games with the above value func-
tions simultaneously. While in principle we can have
the classifier minimize both value functions, we chose
to minimize the proxy losses instead:

LC =− Ez∼p(z)[logF (y(G(z))))]

− Ex∼pd(x)[log (R(y(x)))]. (5)

Finally, the generator is trained to concentrate at the
mode corresponding to the real samples on the classifier
output. A simple loss function for the generator is the
MSE,

LG = Ez∼p(z)[(y(G(z)))− µr)
2]. (6)

In this sense, the generator loss resembles that of least-
squares GAN (Mao et al., 2016), where µr is the tar-
get of the generator. As this technique ensures vari-
ance of the classifier output in regions of interest, we
call this method variance-regularized adversarial learn-
ing (VRAL).
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Figure 1. Histograms of the discriminator outputs given real and generated samples using the normal GAN loss, proxy loss, BGAN,
LSGAN, WGAN, and VRAL (ours) and updating the discriminator 50 times per generator update on MNIST. Only VRAL shows
significant overlap between the two distributions. GAN with the proxy loss and BGAN show highly disburse distributions over real
samples and highly peaked distributions over the generated samples. The observed samples for WGAN, LSGAN, BGAN, and GAN
with both losses were very poor compared to VRAL (see Appendix).

Figure 2. Histograms of the discriminator outputs given real and generated samples for a fixed generator (trained with LSGAN for 5
epochs) and the normal GAN loss, LSGAN, WGAN (with clipping), and VRAL (ours) and were trained for 5 epochs on MNIST. All
methods show large flat areas of (zero gradient) between real and generated scores except VRAL. BGAN and GAN with the proxy loss
are omitted as they only affect generator learning.

3. Experiments and Results
We now demonstrate the properties of the output distri-
bution of y(x). In order to do this, we first train GANs
on the MNIST dataset with a variety of popular methods:
normal GANs as defined by Goodfellow et al. (2014),
the proxy loss, least-squares GANs (LSGAN, Mao et al.,
2016), boundary-seeking GANs (BGAN, Hjelm et al.,
2017), Wasserstein GANs with clipping (WGAN, Ar-
jovsky et al., 2017), and our proposed method, variance-
regularizing adversarial learning (VRAL). For VRAL,
we found setting µr = 1 and µf = 0 worked well in
practice with MNIST. First, we optimize both the gen-
erator and discriminator/critic/classifier (which we will
call the “discriminator” in all settings) according to the
adversarial game defined by the respective value function
for each method, updating the discriminator 50 times for
every generator update (50:1) for 15 epochs. Next, we
train a single generator using the LSGAN objective (with
1:1 updates) for 5 epochs (to ensure it is easy to discrim-
inate), then train a new discriminator for 5 epochs using
one of the above methods, keeping the generator fixed.
All models were parameterized as DCGANs with batch
norm on the generator and discriminator, trained with the
same learning rate and optimized using Adam (Kingma
& Ba, 2014).

Our results (Figure 1) show that training on the origi-
nal loss, LSGAN, and WGAN results in peaked output
distributions with no overlap, while VRAL shows signif-
icant overlap, the latter of which is by design. BGAN
and the proxy loss, in contrast, showed some overlap,
but highly disburse output distributions given the real
samples. Only VRAL showed robustness to these high
update ratios (see Appendix for samples). These results
are corroborated when we train using the fixed generator
(Figure 2).

Next, we trained each of these methods on 1:1 train-
ing for 15 epochs, then computed the output, y(x), and
the gradient norms, ||∇xy(x)||, for 64 interpolations be-
tween random generated / real sample pairs. Our results
(Figure 3) show a smoother decision boundary for VRAL
over all other methods.

Finally, we train on popular datasets for images: CIFAR-
10 (Krizhevsky & Hinton, 2009), CelebA (Chelba et al.,
2013), and the large-scale scene understanding chal-
lenge (LSUN, Yu et al., 2015) bedroom datasets. These
models were trained on standard DCGAN architectures
and optimized with Adam as above. We observed that
VRAL trained well using the same Gaussian means as
above, µr = 1 and µf = 0, worked well with CIFAR,
but µf = −1 produced more stable results for CelebA
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a) Regular GAN b) Proxy Loss GAN c) LSGAN

d) WGAN e) BGAN f) VRAL
Figure 3. Discriminator output, y(x), and gradient norms, ||∇xy||, over varying x̂(γ), where x̂(γ) is the interpolation between real and
fake samples parameterized as x̂(γ) = γx + (1 − γ)G(z), −0.5 ≤ γ ≤ 1.5 (averaged over random pairs). γ < 0.5 was omitted
as all models had the same behavior over this range (flat). γ > 1.0 corresponds to super-unrealistic images, and are only included for
demonstration.

a) CIFAR-10 b) CelebA c) LSUN bedrooms
Figure 4. Samples from CIFAR-10, CelebA, and LSUN trained on VRAL with a DCGAN architecture.

and LSUN (Figure 4).

4. Conclusions
We have rephrased the adversarial game of the gener-
ator into that of mode-matching, moving the adversar-
ial learning to train the discriminator to learn a bimodal
fixed distribution. While our work shows promise, much
additional work is necessary, such as evaluating robust-
ness.
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A. Robustness to Large Training Ratios
In Figure 5, we show samples from models trained up-
dating the discriminator 50 times for every generator up-
date on the MNIST dataset. Only VRAL (ours) is robust
to larger number of discriminator updates in our experi-
ments.

a) GAN (normal loss) b) GAN (proxy loss)

c) LSGAN d) BGAN

e) WGAN f) VRAL

Figure 5. Samples from training on MNIST with a variety of
GAN architectures updating the discriminator 50 times for ev-
ery generator update. Only VRAL (ours) is robust to larger
number of discriminator updates in our experiments.


