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learning unsupervised representations

supervised annotation is very costly

uses:

extract useful information for downstream tasks

good representations:

high correlation between data & representation
captures signal, ignores noise
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mutual information

a measure of how informative one variable is of the other

P
I(X; 2) = Ep,, [log PX;?PZ}

notice that if Pyz = Py ® Pz then I(X;2Z) =0

difficult to calculate
in high dimensions!



mutual information

1. contrastive loss lower bound (infoNCE)

I(X;2) > log(N) + Es [log%]
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from Pyz from Py ® Pz van den Oord et al., 2018

where h(-,-) estimates the ratio



mutual information

2. Donsker-Varadhan representation of KL divergence

P
I(X; Z) = Es,, [log ngpz}
= Dy (Pxz||Px @ Pz)
i,
> sup E]P’XZ [Tw] — log E]P’X®]P’z [6 ]

T, : Q=R

Donsker & Varadhan, 1983
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algorithm
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engineering footnotes

- encoder is a composition of convolutions followed by fully-connected layers
€ncy = f¢ © gy

- first apply gy to obtain an M x M feature map, then apply f, to get representation

T
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conv layers fc layers

- maximize MI between feature map and representation



local InfoMax

- hypothesis: encoder is more likely to capture information shared across all patches

- pro = global structure will be present :
) . irrelevant
- con = model has no incentive to focus on relevant

information, pixel-level noise will be encoded

relevant
information




local InfoMax
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alternate MI

objectives

objective

pros

cons

Donsker-Varadhan (DV)

tightest available
bound on KL
divergence

requires many (-)
samples

Jensen-Shannon
divergence (JSD)

stable; few (-)
samples needed

not the tightest
bound

noise contrastive
estimation (NCE)

strongest results

requires many (-)
samples
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putting it all together

e.g. estimate KL

. 4 lower bound
final objective for Deep InfoMax: - R4

max,, ’ / global InfoMax
+max, y — M2 Z local InfoMax

+ miny maxy vDjgp (Qpﬂor | |@¢) prior matching
L, just like adversarial
autoencoders

a, 8,7 are tunable hyperparameters



results - linear classification

train SVM on learned representations

CIFAR-10

model conv fc z

VAE 53.8 42 1 39.6
adversarial autoencoder 55.2 43.3 37.8
BiGAN 56.4 38.4 449
NAT 48.6 42.6 39.6
DIM 57.6 45.6 18.6
DIM - global only 46.8 28.8 29.1
DIM - local only 63.3 54.1 49.6

conv = last conv layer,

fc - 2nd last fc layer,

Z - representation



results - nonlinear classification (1/2)

train shallow neural network on learned representations

CIFAR-10 CIFAR-100

model conv fc z conv fc z
fully supervised 75.4 42.3

VAE 60.7 | 60.5 | 54.6 37.2 341 | 24.2
B-VAE 624 | 579 | 554 32.3 26.9 | 29.0
adversarial autoencoder 594 | 57.2 52.8 36.2 334 | 23.3
BiGAN 62.6 | 62.7 | 52.5 37.6 33.3 | 21.5
DIM - global 522 | 52.8 | 43.2 27.7 244 | 20.0
DIM - local (DV) 72.7 | 70.6 | 64.7 48.5 | 444 | 39.3
DIM - local (JSD) 73.3 | 73.6 | 67.0 48.1 459 | 39.6
DIM - local (NCE) 75.2 | 75.6 | 69.1 49.7 | 47.7 | 41.6

conv = last conv layer,

fc - 2nd last fc layer, z - representation



results - nonlinear classification (2/2)

train shallow neural network on learned representations

Tiny ImageNet STL-10

model conv fc Y conv fc z
fully supervised 75.4 42.3

VAE 18.6 16.9 11.9 58.3 56.7 | 46.5
B-VAE 19.3 16.8 12.4 57.2 55.1 | 46.9
adversarial autoencoder 18.0 17.3 11.5 59.5 545 | 43.9
BiGAN 7 I O 13.1 71.5 | 67.2 | 58.5
DIM - global 11.3 6.3 5.0 42.0 30.8 | 28.1
DIM - local (DV) 304 | 295 | 28.2 69.2 63.8 | 61.9
DIM - local (JSD) 335 | 369 | 31.7 72.9 70.9 | 65.9
DIM - local (NCE) 34.2 | 38.1 33.3 726 | 70.0 | 67.1

conv = last conv layer,

fc - 2nd last fc layer, z - representation



results - MI neural estimate

train a neural network to estimate MI between input and representations

CIFAR-10

model MINE estimate
VAE 93.0
adversarial autoencoder 87.5
BiGAN 37.7
NAT 6.0

DIM 101.7
DIM - global only 49.6

DIM - local only 45.1

Belghazi et al.,

2018



results - neural dependency measure

shuffle representations along batch axis and train discriminator to tell real from fake

CIFAR-10
discriminator

model

loss
VAE 1.6
adversarial autoencoder 0.1
BiGAN 24.5
NAT 0.1
DIM 22.9
DIM - global only 10.0
DIM - local only 9.2

Brakel & Bengio, 2017




results - occlusion
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Contrastive Predictive Coding

maximize MI

multiple “local”
representations

Deep InfoMax + occlusion



results - occlusion

non-linear classification with occlusion

model CIFAR-10 | STL-10
CPC 77.5 77.8
DIM - original 81.0 77.0
DIM - multiple representations 77.5 78.2




extensions

(a) maximize MI between different views of the same object/scene

- minimize contrastive loss between representations obtained from 2 separate
views [ encoders

Tian et al., 2019; Bachman et al., 2019
(b) maximize MI between audio representations from the same speaker

- similar to (a), but the two “views” correspond to audio waveforms taken from
the same speaker

Ravanelli & Bengio, 2019



conclusions

pros

- Deep InfoMax doesn’t require a decoder
- MlI-based objectives can be extended to other tasks
- local information can be encoded - advantageous for downstream tasks

cons

- still requires 2 discriminators
- may be hard to scale - encoding local information can be harmful
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